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Influence of impurities on hydrodynamic solitons
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The interaction between impurities and solitary waves has been experimentally observed on the surface of a
defective water layer subjected to vertical vibration. A slightly rugged surface on one sidewall of the water
layer serves as the impurity, making the layer breadth at the defect slightly different elsewhere. A wide-breadth
impurity will attract or pin not only the hydrodynamic breather at lower driving frequency, but also the kink at
higher driving frequency, while a narrow-breadth one will repel them. Using a multiple scale expansion
method, a nonlinear Schrédinger equation with an impurity téMirS1) was derived from the basic hydrody-
namic equation. Furthermore, we present numerical calculations that show good agreement between the NLSI-
based theoretical model and the experimental results.
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I. INTRODUCTION trough with the inner size of 76555x 80 mn? is used to
As is well known, homogeneous nonlinear systems supg)bserve both breather and kink after being filled with water

port the undistorted localized waves, so-called solitonsUP t0 & depth ofl. One sidewall of the trough is made up of
These nonlinear systems include some continuous and diglouble layers. The inner layer is made of two pieces of the
crete systems. Two typical samples, solitons in hydrodynamPlexiglas boards with 4 mm thickness. Their size is about
ics[1,2] and the Frenkel-KontorowdK) model(the coupled 379X 80 mn¥. They are fixed on both ends of the outer
pendulum chain[3,4], have been widely studied in the past layer. There is an interspace between two boards at the center
two decades. Theoretically, solitons have been well exof the trough. The width of the interspadé=7 mm is much
plained in the framework of the cubically nonlinear smaller than the length of the trougk 765 mm. Then we
Schrodinger mode(NLS) [3,5,6). For the lattice, of course, insert a 7x 4x 80 mn? Plexiglas bar into the gap between
it is necessary to use the long-wavelength limit or the contwo boards, and the trough becomes a perfect one without
tinuum approximation to transform lattice equations to a dif-any defect. The impurity here is an imhomogeneity in the
ferential equation. Since the 1990s, much attention has be@jteadth of the water layer, which is caused by the slight
paid to the FK chain with some impuriti¢g,8]. Up to now,  ynevenness on one sidewall of the trough. In order to make a
some interesting impurity-soliton mtgracnor{ﬂ;Sl) ha\_/e _ wide-breadth(convex impurity of the water layer, we take
been revealed by a number of theoretical and numerical ingyt the inserted Plexiglas bar from the gap only. To form a
vestigations[3,9,10, based on the NLS with @ impurity  narrow-breadtiiconcave impurity of the water layer, we can
(NLSI) [9,10], put another Plexiglas bar on the inserted bar. Figure 1 shows

i+ o+ 22— g+ 2080 — yf +iay=0, (1)  the horizontal cross sections of water layers with impurities

_ . _ and their corresponding troughs. The thickness of the bars is

where|y] is the envelope amplitude, the subscripts stand fopgjustable and the typical thickness is 2—4 mm, which is also
the partial differential with respect to them,and y are the  smaller than the breadth of the troudi=55 mm. The
damp coefficient and the driving strength, agdiescribes  trough is then placed on a vertically vibrating plate. The
the relative strength of the impurity, respectively. Some im-yiprating apparatus is a typical Faraday resonance system
purity localized modesILM), nonlinear waves localized [11,17]

near the impurity, were also obtained analytically from EqQ.  For the water layer with specific bready and depthd,

@78 . o the (0,1)-mode intrinsic frequency can be estimated by
Our work is stimulated by the theoretical prediction of ISI 5
[9,10] and ILM [7-9] from Eq. (1). Can we experimentally o”=kgtanhkd, 2

observe these ISI and ILM in a typical NLS-governed hydro-yhere wave numbee= /by, andg is the acceleration due to
dynamic system? In this paper, we are going to investigat@ravity. The intrinsic frequencies of théd,)) mode, f
the interactions between impurities and the hydrodynamic /2. are about 3.438 and 2.706 Hz for experimental lay-

solitons including the breathéi] and kink[2]. ers with by=55 mm andd=21 mm andd=10 mm, respec-
IIl. INTERACTION BETWEEN SOLITONS tively. _ , , .
AND IMPURITIES Before |ntrOdUC|ng an impurity, an appropriate frequency

) S and amplitude were applied to the oscillating plate to excite
The apparatus used in the present studies is similar to that yreather on the surface of the liquid layer in the trough, as
described in more detail eslewhefél,13. A Plexiglas  opserved usualljl] [see Fig. 23)]. In Fig. 2a), we can see
that the breather, whose center isxgt—62 mm, is smooth
in profile. Then, we introduced a wide-breadth impurity at
*Electronic address: wzchen@nju.edu.cn x;=0 suddenly. The breather was then attracted from the pri-
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Al FIG. 1. The horizontal cross sections of the
e L > e L > water layers with impuritieguppe) and their cor-
responding troughglower). (a) A wide-breadth
T T T ab (convey impurity; (b) a narrow-breadth(con-
k| N KXY cave one.
{IL_" =

mary centerx, to x;. Meanwhile, the breather lost its smooth than the double intrinsic frequency of t@,1) modg.

profile and became a distorted ofsee Figs. &) or 2(c)], Due to the topological difference, the interaction between
that is, ILM [7]. The evolution duration from Figs.(& (in- the kink and impurities is inverse to that between the
troducing the impurity to 2(b) or 2(c) is relevant to the breather and impurities, in the numerical calculation based
strength of the impurity, and its typical value is tens of sec-on the NLSI of a discrete systefi0]. Then, the question is,
onds. However, if the breather was initially localized at thewhat will happen in our experimental system?

exact position where the wide-breadth impurity would be In order to form a kink, we pumped some water out until
introduced(viz., Xxo=X;), it would remain stationary. The data d=10 mm, which means it®,1)-mode intrinsic frequency is

in Fig. 3(@ record the evolution process that the wide-about 2.706 Hz. Increasing the driving amplituéigat 2f,
breadth impurities attract or pin the breathers. On the other5.427 Hz, we observed a kink &=50 mm; then a wide-
hand, if we excited a perfect breatherngt0, and then in-  breadth impurity(Ab=5 mm) was introduced ak;=0. The
troduced a narrow-breadth impurity at the same positiorwide-breadth impurity attracted the kink frorg to x; (see
(viz., X;=%9=0), the narrow-breadth impurity would repel the Fig. 4). If the kink was originally located at,=0, the same
breather out of its centdisee Fig. 8)]. The driving fre-  position as the impurityx,=0), it would be pinned ak;=0
quency 2. is about 6.550 Hz, which is slightly lower than

the double intrinsic frequency of the perfect layer, safy, 2 . . . L
=6.876 Hz. 0 |<& .
Therefore, the experiments demonstrate that both wide-
and narrow-breadth impurities are able to affect the breather. _
A wide-breadth impurity can attract or pin the breather, while E 20 i
the narrow one repels the breather at low frequdihawer E B Ab=dmm, 5=0
g 40 b ® Ab=4mm, x,=-62mm |
(@) E O ab=2mm,s,=62mm |
Numerical
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FIG. 3. The interactions between breather and impurities.
The breather is attracted or pinned by wide-breadth impurities
(Ab=4 and 2 mm. (b) The breather is repelled by narrow-breadth
impurities (Ab=-4 and -2 mm The driving frequency £

FIG. 2. The photos of the perfect and distorted breatt{ey#\n =6.550 Hz, slightly lower than the double intrinsic frequency of the
initial perfect state;(b) a final state, the ILM described by (0,1) mode for a perfect layer withy=55 mm andd=21 mm, and
seclik|x| - 6) with #>0 andk being a constar{t7]; and(c) another  the driving amplitudeA,=0.486 mm. The curves show the numeri-
final state, the ILM described by sd&tx| - 6) with <0 [7]. cal results withN=131.
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FIG. 4. The evolution of a kink near the wide-breadth impurity. o 23 4 3
The kink is initially atx,=-50 mm, and is finally attracted to the Impurity intensity A (mm)
position of the impurity,x,=0, whereAb=5 mm, %,=5.427 Hz,

andA.=1.596 mm. FIG. 5. The interaction strength on different impurity dimen-

sionsAb and the driving amplitudé\..

without any motion. Furthermore, we also observed that a

kink would be repelled by a narrow-breather impurityb ¢y=0aty=0, (4)

<0 mm). The observation seems to suggest that the kink-

impurity interaction is just the same as the breather-impurity _ _

interaction. It is a paradox that the interaction remains un- ¢y=0aty=bx), ®

changed as the solitary wave changes from the breather to

the kink, which is far away from the numerical prediction $,=0 atz=—-d (6)
A - ]

based on the FK chairi0]. In fact, the interaction rule in the
hydrodynamic system here is completely consistent with the
prediction from the FK chain, and can be explained using the _ - -

resonant absorption pictuf&0]. We note that the half driv- G- ¥ bt ity =0 atz=Exyn), ™
ing frequencyf,=2.714 Hz was higher than the intrinsic fre-

qguency of the kink(f=2.706 H2 and rather lower than the 1

intrinsic frequency of the breather. In other words, the wide- (g-— 4Aea)§cos )E+ P+ =(Vh)2=0 atz= &x,y,1),
breadth impurity attracts the breather at low frequency, and it 2

also attracts the kink at high frequency. As a straightforward (8)
deduction, the wide-breadth impurity should repel the kink at

low frequency, which cannot be observed in the eXpe”memwhere¢(x,y,z,t) andé&(x,y,t) are the velocity potential and
unforr]tunately[zal. ‘i . < rel holhe free surface displacemefielative to the troughof the
The strength of the ISl, o course, Is relevant to t Cliquid layer, respectively. For a perfect liquid layex(x)
strength of the impurities, say, the dimension of the defectgb — const. However. we are interested in the case of
Ab. There is a positive relation between them in our experi- ° ' '

mental region. Furthermore, the strength of the ISI also de-

pends on the driving amplitudé,. Figure 5 shows the b(x) =be[1 + €f(x)] = by + F(x), 9)
strength(the displacement during 40 cycjegersusAb and
Ae. where the functiorf(x) describes the shape of the defect, and
€ is a small parametef(x) >0 stands for a positivéwide-
I1l. NONLINEAR SCHRODINGER EQUATION breadth impurity, and f(x)<0 for a negative (narrow-
WITH BREADTH DEFECT breadth one.

As usual, we assume the wavy motion is small,

. . d(x,y,z,t) ~ ¢, and &(x,y,t) ~ €, due to the driving ampli-
tons was proposed by Larraeaal. [5] and Miles[6] since tude A= €?a,~ €, is small. Furthermore, according to the

the hydrodynamic breather was discoveféd The perfect experiments we set the half driving frequensyvery close

hydrodynamic soliton can be well explained in the frame—t the intrinsic f f the dominant mode that i
work of the forced and damped nonlinear Schrédinger equa—0 2_e ZIH/QHS_I(;ZAFGELGJZGHBCny tek' omlnatﬂ mo itio| a 'SI’
tion [6], which is in the same form of Eq1) without the '¥e” @ )/20= - beTore taking up the mulliple scales

; : P ; thod, we should regularize the boundary curve yof
impurity term. For a liquid layer of uniform deptd and M€ 5 .
defective breadthb(x) subjected to vertical vibration =Db(x). We expand the boundary condition Ef) aty=by, as

A, COS 2ut, We can write out the basic hydrodynamic equa-done usually in the free surface conditions E@3.and(8).
tions Then using the multiple scales method, we finally achieve an

NLS with a breadth impurityr(x) to describe the modulation
V2¢=0 for —d<z=< &(x,y,2), (3)  amplitude along the direction,

The theoretical model for the perfect hydrodynamic soli-
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TABLE |. Effects of the breadth and depth impurities.

iy = ST +KdL =T sy~ (L~ TIF(9

Solitons Breadth impurity ~ Depth impurity ISI
2_ 2 : 2 20'A . -

+ (0~ 0) P+ 2di o~ AlY*y - Y =0, Breatherf,<f Wide Shallow Attr.
9 Narrow Deep Repel

(10) Kink fo>f Wide Shallow Attr.
where Narrow Deep Repel

A= k—4(6T4—5T2+ 16 -97?) (11)

8 ' make changes in the intrinsic frequency, according to(Bq.

A similar experiment has been performed to investigate the
interaction between the depth impurity and solitons. The re-
sults show that a shallow impurity will attract breathers and
kinks while a deep one will repel them, which is consistent
£(x,y,1) = g(x,t)cosky '+ c.c., (12)  with those of the breadth impuriti€see Table )l

with T=tanhkd (see the Appendix In Eq. (10), « is intro-
duced to describe the weak viscidity of fluid. The wavy mo-
tion can be written as

where c.c. denotes the complex conjugation. The coefficient
of the cubic nonlinear termA, determines the solitary waves

. . . V. CONCLUSION AND DISCUSSION
to be a breather or a kink for a negative coefficient of the

diffusive term. In other wordsj(x,t) gets a breather solution In summary, we have investigated the interaction between
if A>0, and a kink one i< 0[13]. Obviously, Eq(10) has  the impurities and solitons on the surface of a defective layer
the same form as Edl). of liquid subjected to parametric vibration. The experiments

show that the wide-breadth impurity attracts the breather at
lower driving frequency than the double intrinsic one. Simi-
IV. NUMERICAL SIMULATION lar interactions are observed in the case of the kink driven at

Given the details of defect functidf(x), we can calculate nigher frequency than the double intrinsic frequency. All of
the function(x,t) numerically. In the simulation, we used the regularity of ISI is completely consistent with that pre-

the implicit finite difference to represent approximately thedéc'[e(;j rtl):m_erl(r:]ally_lr; the df|stﬁrete FK m?d%l' wh;iccgjlsTL;]nder—
partial differential with respect to spatial coordinateas a standable in the picture of the resonant absorpitidl}. The

result, the partial differential equatiqd0) was transformed ILM is also _observe_d experlmentally. In _theory, from_ f[he
to a set ofN ordinary differential equation€ODE) (N is the hydro_dynamlc e_quat|on W'.Fh.a defecnve_ S'dewa" cqnd|t|qn,
number of the mesh gridThen we integrated the set of the a CUb'Ca”Y nonlinear S.chrod!nger equ_at|on with an impurity
ODEs by using the fifth-order Runge-Kutta algorithm as de—F(X) [a unlvers_al case mclgdmg the Dw@(:x) used_usualljl
scribed in Ref[14]. All experimentally measurable param- has been achieved by using perturbat|_on t(_achnlque. Due to
eters were employed in the numerical computation excepg1e apsence of .the continuum approximation, EL. can
Ab. The phenomenological viscosity, was determined by escnbg the ISl in the hydrodynamic system b(.etter.than that
fitting the experimental data, and was 0.46—0.48is our I the discrete latticE12]. Therefore, all ot_)servatlons includ-
calculation. The strength of the impurity served as adjustabl g sl a_nd ILM can be_: well reproduceql in the framework of
parameters. The number of meldhs related directly to the LSI without exception. Th_e experiment re_ported _here
breadth of the impurity for a fixed number of the defectiveStror.]gly. supports the theoretical conclusions in a serial of
mesh. In our calculation, the number of the defective meslH)Ub“Cat'onSB_lq on the ISI governed by NLSI.
was set to 2. The total number of the mesh was adjusted to fit
the data.

In Fig. 3, we show the numerical results by curves. A ACKNOWLEDGMENTS
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which is quite understandable and consistent with the obser-
vation in Fig. 5.

Of course, we can also simplify the impurity function
F(x) by a Dirac&(x) function and rescale the coordinates to
arrive at Eq.(1), and extend the analytic method in Refs.  Although the basic hydrodynamic equatio(®—(8) are
[7,9] to study the ILM. different from those in regular boundary conditions, they are

Furthermore, we note that the breadth impurity affects thalso solved analytically by the perturbation technology. At
hydrodynamic solitons by changing the intrinsic frequency infirst we introduce the slow variableg,x,,t;,t, as the fol-
the impurity. So, we can also make some depth impurities tdowing:

APPENDIX: DEDUCTION OF EQ. (10)
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7 ei + ezi +0O(d) (A1) &=- igwcosky d*o+c.c., (A15)
X Xy X g
and where c.c. stands for the complex conjugate, apd
=Xy, %0,11,t) is @ function of slow variables. In order to
9 N 7 + Ei + gi +0O(&). (A2)  determine they, we will go on solving the equations in the
gt dtyg  dty higher orders of.

At the same time, the functiong and £ are assumed to be 1 N€ €quations in the order of are

small and can be expressed as doyy* b2, =0for (-d<sz<0), (Al6)
D(X,Y,Z,1) = €d1(X0, %0, Y, Z to 11, to) + Edo(X1,X0,Y, Z to, 1, 1) 4oy =0 aty=0, a17)
+ Eha(X1,%o,Y, 2,10, 11, 1) + O(€?) (A3)
and ¢y =0 aty =by, (A18)
Ex,Y,t) = e€1(x1, %, Y to b, o) + €6,(X1, %, Y to by, ) ¢,,=0 atz=-d, (A19)
+ E&3(x, %, Y ot ) + O(€). (A4)

Eay = b2z = D121~ brybay — €, Atz=0,  (A20)
Before expanding them, we homogenize the boundary con-

ditions on the defective sidewall and the free surface as well. 1r , 5

Equationg5), (7), and(8) are expanded into Taylor serials at G, t 962=~ by, ~ §[¢1y + ] - b1 761 atz=0.
their corresponding regular planes, that is,

(A21)
— &b-F = N=0 =hy, (A5

by~ €[DoFxbx+ yyoF]+ O() =0 aty=by, (AS) The solutions to EqSA16)<A21) can be easily written as
b= bt bt by~ kbt by~ o $28° o= | a(2- T )05 20N REL D
t~ Pz PxSx T Pyby T P xzoox T TYzS%y 5 2" 8w ycoshikd

4\ — —
+0O(e")=0atz=0, (AB) V(14 3T2)} 2P0 + ¢ c. (A22)
and

1 and
i+ 9(1+ doZace’cos Qo é+ S [(4)7 + () + (¢,)7] K22 |
&= [4—9(1 - 3T 2)cos ky €+ c.c.

1 2
+ bt [¢x¢xz+ ¢y¢yz+ ¢z¢zz—|§ + §¢zzl§

+0(e)=0, atz=0. (A7)

Substituting Eqs(A1)—(A4) into Egs.(3), (4), (6), and(A5)—
(A7), we obtain a chain of equations in different orderseof

Ko (12
+ 2 [(1+T?)cosxy-(1-T?)], (A23)

with T=tanhkd.
The equations in the order ef are

The equations in the first order are the following: b3yt b322= ~ bixx, fOr (-d<z<0), (A24)
$ryyt h1,=0 for (-d<z=<0), (A8) $ay=0aty=0, (A25)
$1y=0aty=0, (A9) bay = = 1y bof (%1, %) aty =by, (A26)
¢1y=0 aty =by, (ALO) $5,=0 atz=—d, (A27)
¢,=0atz=-d, (A11) fy,~ da,=T1 at2=0, (A28)
£y~ ¢1,=0 atz=0, (A12) o, +063= 1, atz=0, (A29)

by, + 96 =0 atz=0, (A13)  where the known function§; andf, are defined as

so the solutions are 1
f=- §2tl + hrhot hofr Eﬁblzzg% = Pryboy — daybay
coshk(z+d) oo 4

1=y cosky coshkd ¢c (Al4) ~ bry1éry ~ éu, (A30)

and and
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fo = — 4gwiaccos Wty ~ bar, = b, - b1z 62 sinhk(z+d)

¢3=| (z+d)y, . cosky
+ [(‘/’2210 + d’lztl)]fl - [(¢1z¢lzz+ ¢1y¢1yz)]§l o 2k coshkd
kv sink coshk(z+ d)f(x %)
Y SIKY shkd b2

sinhk(z+d)
-k(z+d)y COSkym

1 2
= P12, §¢1zzb§1 - ¢1y¢2y- (A31)

f(xy,X%p) |€“0+ c.c.

The surface functioné; can be eliminated through Egs.

(A28) and (A29), and the boundary condition @f; on the (A33)

surfacez=0 becomes The balance in the fundamental motion of £432) gives
out a limitative equation for the functiod,

barg, t 93, = Far, — Ofs. (A32) 2wy, - ng[T +kd(1-T?) ]y 5~ gk(1 =T EFX)

4
Although the third-order equation®24)—(A27) and (A32) + €AY+ 2iwa’ EY— APy - Ziezaew* =0. (A34)
with Egs.(A30) and(A31) are quite complicated, especially 9
the asymmetrical conditions between two sidewallya®  Substituting €t=t,, ex=x; and €a.,=A,, €A=(w?
andy=h,, fortunately we have found an explicit expression—wg)/Zw,eza’:a, we recover the slow variables into their
of the fundamental motion of; as the following: original ones, and transfer EGA34) into Eq. (10).
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