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The interaction between impurities and solitary waves has been experimentally observed on the surface of a
defective water layer subjected to vertical vibration. A slightly rugged surface on one sidewall of the water
layer serves as the impurity, making the layer breadth at the defect slightly different elsewhere. A wide-breadth
impurity will attract or pin not only the hydrodynamic breather at lower driving frequency, but also the kink at
higher driving frequency, while a narrow-breadth one will repel them. Using a multiple scale expansion
method, a nonlinear Schrödinger equation with an impurity termsNLSId was derived from the basic hydrody-
namic equation. Furthermore, we present numerical calculations that show good agreement between the NLSI-
based theoretical model and the experimental results.
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I. INTRODUCTION

As is well known, homogeneous nonlinear systems sup-
port the undistorted localized waves, so-called solitons.
These nonlinear systems include some continuous and dis-
crete systems. Two typical samples, solitons in hydrodynam-
ics f1,2g and the Frenkel-KontorovasFKd modelsthe coupled
pendulum chaind f3,4g, have been widely studied in the past
two decades. Theoretically, solitons have been well ex-
plained in the framework of the cubically nonlinear
Schrödinger modelsNLSd f3,5,6g. For the lattice, of course,
it is necessary to use the long-wavelength limit or the con-
tinuum approximation to transform lattice equations to a dif-
ferential equation. Since the 1990s, much attention has been
paid to the FK chain with some impuritiesf7,8g. Up to now,
some interesting impurity-soliton interactionssISId have
been revealed by a number of theoretical and numerical in-
vestigationsf3,9,10g, based on the NLS with ad impurity
sNLSId f9,10g,

ict + cxx + 2ucu2c − c + 2qdsxdc − gc* + iac = 0, s1d

whereucu is the envelope amplitude, the subscripts stand for
the partial differential with respect to them,a andg are the
damp coefficient and the driving strength, andq describes
the relative strength of the impurity, respectively. Some im-
purity localized modessILM d, nonlinear waves localized
near the impurity, were also obtained analytically from Eq.
s1d f7,8g.

Our work is stimulated by the theoretical prediction of ISI
f9,10g and ILM f7–9g from Eq. s1d. Can we experimentally
observe these ISI and ILM in a typical NLS-governed hydro-
dynamic system? In this paper, we are going to investigate
the interactions between impurities and the hydrodynamic
solitons including the breatherf1g and kink f2g.

II. INTERACTION BETWEEN SOLITONS
AND IMPURITIES

The apparatus used in the present studies is similar to that
described in more detail eslewheref11,12g. A Plexiglas

trough with the inner size of 765355380 mm3 is used to
observe both breather and kink after being filled with water
up to a depth ofd. One sidewall of the trough is made up of
double layers. The inner layer is made of two pieces of the
Plexiglas boards with 4 mm thickness. Their size is about
379380 mm2. They are fixed on both ends of the outer
layer. There is an interspace between two boards at the center
of the trough. The width of the interspaceDl =7 mm is much
smaller than the length of the troughl =765 mm. Then we
insert a 734380 mm3 Plexiglas bar into the gap between
two boards, and the trough becomes a perfect one without
any defect. The impurity here is an imhomogeneity in the
breadth of the water layer, which is caused by the slight
unevenness on one sidewall of the trough. In order to make a
wide-breadthsconvexd impurity of the water layer, we take
out the inserted Plexiglas bar from the gap only. To form a
narrow-breadthsconcaved impurity of the water layer, we can
put another Plexiglas bar on the inserted bar. Figure 1 shows
the horizontal cross sections of water layers with impurities
and their corresponding troughs. The thickness of the bars is
adjustable and the typical thickness is 2–4 mm, which is also
smaller than the breadth of the troughb0=55 mm. The
trough is then placed on a vertically vibrating plate. The
vibrating apparatus is a typical Faraday resonance system
f11,12g.

For the water layer with specific breadthb0 and depthd,
the s0,1d-mode intrinsic frequency can be estimated by

v2 = kg tanhkd, s2d

where wave numberk=p /b0, andg is the acceleration due to
gravity. The intrinsic frequencies of thes0,1d mode, f
=v /2p, are about 3.438 and 2,706 Hz for experimental lay-
ers with b0=55 mm andd=21 mm andd=10 mm, respec-
tively.

Before introducing an impurity, an appropriate frequency
and amplitude were applied to the oscillating plate to excite
a breather on the surface of the liquid layer in the trough, as
observed usuallyf1g fsee Fig. 2sadg. In Fig. 2sad, we can see
that the breather, whose center is atx0=−62 mm, is smooth
in profile. Then, we introduced a wide-breadth impurity at
xi =0 suddenly. The breather was then attracted from the pri-*Electronic address: wzchen@nju.edu.cn
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mary centerx0 to xi. Meanwhile, the breather lost its smooth
profile and became a distorted onefsee Figs. 2sbd or 2scdg,
that is, ILM f7g. The evolution duration from Figs. 2sad sin-
troducing the impurityd to 2sbd or 2scd is relevant to the
strength of the impurity, and its typical value is tens of sec-
onds. However, if the breather was initially localized at the
exact position where the wide-breadth impurity would be
introducedsviz., x0=xid, it would remain stationary. The data
in Fig. 3sad record the evolution process that the wide-
breadth impurities attract or pin the breathers. On the other
hand, if we excited a perfect breather atx0=0, and then in-
troduced a narrow-breadth impurity at the same position
sviz., xi =x0=0d, the narrow-breadth impurity would repel the
breather out of its centerfsee Fig. 3sbdg. The driving fre-
quency 2fe is about 6.550 Hz, which is slightly lower than
the double intrinsic frequency of the perfect layer, say, 2f
=6.876 Hz.

Therefore, the experiments demonstrate that both wide-
and narrow-breadth impurities are able to affect the breather.
A wide-breadth impurity can attract or pin the breather, while
the narrow one repels the breather at low frequencyflower

than the double intrinsic frequency of thes0,1d modeg.
Due to the topological difference, the interaction between

the kink and impurities is inverse to that between the
breather and impurities, in the numerical calculation based
on the NLSI of a discrete systemf10g. Then, the question is,
what will happen in our experimental system?

In order to form a kink, we pumped some water out until
d=10 mm, which means itss0,1d-mode intrinsic frequency is
about 2.706 Hz. Increasing the driving amplitudeAe at 2fe
=5.427 Hz, we observed a kink atx0=50 mm; then a wide-
breadth impuritysDb=5 mmd was introduced atxi =0. The
wide-breadth impurity attracted the kink fromx0 to xi ssee
Fig. 4d. If the kink was originally located atx0=0, the same
position as the impuritysxi =0d, it would be pinned atxi =0

FIG. 1. The horizontal cross sections of the
water layers with impuritiessupperd and their cor-
responding troughsslowerd. sad A wide-breadth
sconvexd impurity; sbd a narrow-breadthscon-
caved one.

FIG. 2. The photos of the perfect and distorted breathers.sad An
initial perfect state; sbd a final state, the ILM described by
sechskuxu−ud with u.0 andk being a constantf7g; andscd another
final state, the ILM described by sechskuxu−ud with u,0 f7g.

FIG. 3. The interactions between breather and impurities.sad
The breather is attracted or pinned by wide-breadth impurities
sDb=4 and 2 mmd. sbd The breather is repelled by narrow-breadth
impurities sDb=−4 and −2 mmd. The driving frequency 2fe

=6.550 Hz, slightly lower than the double intrinsic frequency of the
s0,1d mode for a perfect layer withb0=55 mm andd=21 mm, and
the driving amplitudeAe=0.486 mm. The curves show the numeri-
cal results withN=131.
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without any motion. Furthermore, we also observed that a
kink would be repelled by a narrow-breather impuritysDb
,0 mmd. The observation seems to suggest that the kink-
impurity interaction is just the same as the breather-impurity
interaction. It is a paradox that the interaction remains un-
changed as the solitary wave changes from the breather to
the kink, which is far away from the numerical prediction
based on the FK chainf10g. In fact, the interaction rule in the
hydrodynamic system here is completely consistent with the
prediction from the FK chain, and can be explained using the
resonant absorption picturef10g. We note that the half driv-
ing frequencyfe=2.714 Hz was higher than the intrinsic fre-
quency of the kinksf =2.706 Hzd and rather lower than the
intrinsic frequency of the breather. In other words, the wide-
breadth impurity attracts the breather at low frequency, and it
also attracts the kink at high frequency. As a straightforward
deduction, the wide-breadth impurity should repel the kink at
low frequency, which cannot be observed in the experiment,
unfortunatelyf2g.

The strength of the ISI, of course, is relevant to the
strength of the impurities, say, the dimension of the defects
Db. There is a positive relation between them in our experi-
mental region. Furthermore, the strength of the ISI also de-
pends on the driving amplitudeAe. Figure 5 shows the
strengthsthe displacement during 40 cyclesd versusDb and
Ae.

III. NONLINEAR SCHRÖDINGER EQUATION
WITH BREADTH DEFECT

The theoretical model for the perfect hydrodynamic soli-
tons was proposed by Larrazaet al. f5g and Milesf6g since
the hydrodynamic breather was discoveredf1g. The perfect
hydrodynamic soliton can be well explained in the frame-
work of the forced and damped nonlinear Schrödinger equa-
tion f6g, which is in the same form of Eq.s1d without the
impurity term. For a liquid layer of uniform depthd and
defective breadthbsxd subjected to vertical vibration
Ae cos 2vet, we can write out the basic hydrodynamic equa-
tions,

¹2f = 0 for −d ø zø jsx,y,zd, s3d

fy = 0 aty = 0, s4d

fy = 0 aty = bsxd, s5d

fz = 0 atz= − d, s6d

jt − fz + fxjx + fyjy = 0 atz= jsx,y,td, s7d

sg − 4Aeve
2cos 2vetdj + ft +

1

2
s¹fd2 = 0 atz= jsx,y,td,

s8d

wherefsx,y,z,td andjsx,y,td are the velocity potential and
the free surface displacementsrelative to the troughd of the
liquid layer, respectively. For a perfect liquid layer,bsxd
=b0;const. However, we are interested in the case of

bsxd = b0f1 + e2fsxdg ; b0 + Fsxd, s9d

where the functionfsxd describes the shape of the defect, and
e is a small parameter.fsxd.0 stands for a positiveswide-
breadthd impurity, and fsxd,0 for a negativesnarrow-
breadthd one.

As usual, we assume the wavy motion is small,
fsx,y,z,td,e, and jsx,y,td,e, due to the driving ampli-
tude Ae=e2ae,e2, is small. Furthermore, according to the
experiments we set the half driving frequencyve very close
to the intrinsic frequency of the dominant modev, that is,
sve

2−v2d /2v=e2D,e2. Before taking up the multiple scales
method, we should regularize the boundary curve ofy
=bsxd. We expand the boundary condition Eq.s5d at y=b0, as
done usually in the free surface conditions Eqs.s7d and s8d.
Then using the multiple scales method, we finally achieve an
NLS with a breadth impurityFsxd to describe the modulation
amplitude along thex direction,

FIG. 4. The evolution of a kink near the wide-breadth impurity.
The kink is initially at x0=−50 mm, and is finally attracted to the
position of the impurity,xi =0, whereDb=5 mm, 2fe=5.427 Hz,
andAe=1.596 mm.

FIG. 5. The interaction strength on different impurity dimen-
sionsDb and the driving amplitudeAe.
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2ivct −
g

2k
fT + kds1 − T2dgcxx − gk2s1 − T2dFsxdc

+ sv2 − ve
2dc + 2aivc − Aucu2c −

2v4Ae

g
c* = 0,

s10d

where

A =
k4

8
s6T4 − 5T2 + 16 − 9T−2d, s11d

with T=tanhkd ssee the Appendixd. In Eq. s10d, a is intro-
duced to describe the weak viscidity of fluid. The wavy mo-
tion can be written as

jsx,y,td = csx,tdcosky eivt + c.c., s12d

where c.c. denotes the complex conjugation. The coefficient
of the cubic nonlinear term,A, determines the solitary waves
to be a breather or a kink for a negative coefficient of the
diffusive term. In other words,csx,td gets a breather solution
if A.0, and a kink one ifA,0 f13g. Obviously, Eq.s10d has
the same form as Eq.s1d.

IV. NUMERICAL SIMULATION

Given the details of defect functionFsxd, we can calculate
the functioncsx,td numerically. In the simulation, we used
the implicit finite difference to represent approximately the
partial differential with respect to spatial coordinatex; as a
result, the partial differential equations10d was transformed
to a set ofN ordinary differential equationssODEd sN is the
number of the mesh gridd. Then we integrated the set of the
ODEs by using the fifth-order Runge-Kutta algorithm as de-
scribed in Ref.f14g. All experimentally measurable param-
eters were employed in the numerical computation except
Db. The phenomenological viscosity,a, was determined by
fitting the experimental data, and was 0.46–0.48 s−1 in our
calculation. The strength of the impurity served as adjustable
parameters. The number of meshN is related directly to the
breadth of the impurity for a fixed number of the defective
mesh. In our calculation, the number of the defective mesh
was set to 2. The total number of the mesh was adjusted to fit
the data.

In Fig. 3, we show the numerical results by curves. A
good agreement with the experimental data has been
achieved. Based on the numerical computation, it is easy to
discuss the effect of the defect sizeFsxd on the strength of
the ISI. The result shows that the strength of the ISI weakens
as the defect size decreases for a fixed breadth of the trough,
which is quite understandable and consistent with the obser-
vation in Fig. 5.

Of course, we can also simplify the impurity function
Fsxd by a Diracdsxd function and rescale the coordinates to
arrive at Eq.s1d, and extend the analytic method in Refs.
f7,9g to study the ILM.

Furthermore, we note that the breadth impurity affects the
hydrodynamic solitons by changing the intrinsic frequency in
the impurity. So, we can also make some depth impurities to

make changes in the intrinsic frequency, according to Eq.s2d.
A similar experiment has been performed to investigate the
interaction between the depth impurity and solitons. The re-
sults show that a shallow impurity will attract breathers and
kinks while a deep one will repel them, which is consistent
with those of the breadth impuritiesssee Table Id.

V. CONCLUSION AND DISCUSSION

In summary, we have investigated the interaction between
the impurities and solitons on the surface of a defective layer
of liquid subjected to parametric vibration. The experiments
show that the wide-breadth impurity attracts the breather at
lower driving frequency than the double intrinsic one. Simi-
lar interactions are observed in the case of the kink driven at
higher frequency than the double intrinsic frequency. All of
the regularity of ISI is completely consistent with that pre-
dicted numerically in the discrete FK model, which is under-
standable in the picture of the resonant absorptionf10g. The
ILM is also observed experimentally. In theory, from the
hydrodynamic equation with a defective sidewall condition,
a cubically nonlinear Schrödinger equation with an impurity
Fsxd fa universal case including the Diracdsxd used usuallyg
has been achieved by using perturbation technique. Due to
the absence of the continuum approximation, Eq.s1d can
describe the ISI in the hydrodynamic system better than that
in the discrete latticef12g. Therefore, all observations includ-
ing ISI and ILM can be well reproduced in the framework of
NLSI without exception. The experiment reported here
strongly supports the theoretical conclusions in a serial of
publicationsf8–10g on the ISI governed by NLSI.
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APPENDIX: DEDUCTION OF EQ. (10)

Although the basic hydrodynamic equationss3d–s8d are
different from those in regular boundary conditions, they are
also solved analytically by the perturbation technology. At
first we introduce the slow variablesx1,x2,t1,t2 as the fol-
lowing:

TABLE I. Effects of the breadth and depth impurities.

Solitons Breadth impurity Depth impurity ISI

Breatherfe, f Wide Shallow Attr.

Narrow Deep Repel

Kink fe. f Wide Shallow Attr.

Narrow Deep Repel
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]

]x
→ e

]

]x1
+ e2 ]

]x2
+ Ose3d sA1d

and

]

]t
→ ]

]t0
+ e

]

]t1
+ e2 ]

]t2
+ Ose3d. sA2d

At the same time, the functionsf and j are assumed to be
small and can be expressed as

fsx,y,z,td = ef1sx1,x2,y,z,t0,t1,t2d + e2f2sx1,x2,y,z,t0,t1,t2d

+ e3f3sx1,x2,y,z,t0,t1,t2d + Ose4d sA3d

and

jsx,y,td = ej1sx1,x2,y,t0,t1,t2d + e2j2sx1,x2,y,t0,t1,t2d

+ e3j3sx1,x2,y,t0,t1,t2d + Ose4d. sA4d

Before expanding them, we homogenize the boundary con-
ditions on the defective sidewall and the free surface as well.
Equationss5d, s7d, ands8d are expanded into Taylor serials at
their corresponding regular planes, that is,

fy − e2fb0Fxfx + fyyb0Fg + Ose4d = 0 aty = b0, sA5d

jt − fz + fxjx + fyjy − fzzj + fxzjjx + fyzjjy −
1

2
fzzzj2

+ Ose4d = 0 atz= 0, sA6d

and

ft + gs1 + 4ve
2aee

2cos 2vetdj +
1

2
fsfxd2 + sfyd2 + sfzd2g

+ fztj + ffxfxz+ fyfyz+ fzfzzgj +
1

2
fzztj

2

+ Ose4d = 0, atz= 0. sA7d

Substituting Eqs.sA1d–sA4d into Eqs.s3d, s4d, s6d, andsA5d–
sA7d, we obtain a chain of equations in different orders ofe.
The equations in the first order are the following:

f1yy + f1zz= 0 for s− d ø zø 0d, sA8d

f1y = 0 aty = 0, sA9d

f1y = 0 aty = b0, sA10d

f1z = 0 atz= − d, sA11d

j1t0
− f1z = 0 atz= 0, sA12d

f1t0
+ gj1 = 0 atz= 0, sA13d

so the solutions are

f1 = c cosky
coshksz+ dd

coshkd
eivt0 + c.c. sA14d

and

j1 = − i
v

g
c cosky eivt0 + c.c., sA15d

where c.c. stands for the complex conjugate, andc
=csx1,x2,t1,t2d is a function of slow variables. In order to
determine thec, we will go on solving the equations in the
higher orders ofe.

The equations in the order ofe2 are

f2yy + f2zz= 0 for s− d ø zø 0d, sA16d

f2y = 0 aty = 0, sA17d

f2y = 0 aty = b0, sA18d

f2z = 0 atz= − d, sA19d

j2t0
− f2z = f1zzj1 − f1yj1y − j1t1

at z= 0, sA20d

f2t0
+ gj2 = − f1t1

−
1

2
ff1y

2 + f1z
2 g − f1t0zj1 at z= 0.

sA21d

The solutions to Eqs.sA16d–sA21d can be easily written as

f2 =
ik2

8v
F3sT2 − T−2dcos 2ky

cosh 2ksz+ dd
cosh 2kd

+ s1 + 3T2dGc2e2ivt0 + c.c. sA22d

and

j2 = Fk2c2

4g
s1 − 3T−2dcos 2ky e2ivt0 + c.c.G

+
k2ucu2

2g
fs1 + T2dcos 2ky− s1 − T2dg , sA23d

with T=tanhkd.
The equations in the order ofe3 are

f3yy + f3zz= − f1x1x1
for s− d ø zø 0d, sA24d

f3y = 0 aty = 0, sA25d

f3y = − f1yyb0fsx1,x2d at y = b0, sA26d

f3z = 0 atz= − d, sA27d

j3t0
− f3z = f1 at z= 0, sA28d

f3t0
+ gj3 = f2 at z= 0, sA29d

where the known functionsf1 and f2 are defined as

f1 ; − j2t1
+ f1zzj2 + f2zzj1 +

1

2
f1zzzj1

2 − f1yj2y − f2yj1y

− f1yzj1j1y − j1t2
sA30d

and
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f2 ; − 4gve
2aecos 2vet0j1 − f2t1

− f1t2
− f1zt0

j2

+ fsf2zt0
+ f1zt1

dgj1 − fsf1zf1zz+ f1yf1yzdgj1

− f1zf2z −
1

2
f1zzt0

j1
2 − f1yf2y. sA31d

The surface functionj3 can be eliminated through Eqs.
sA28d and sA29d, and the boundary condition off3 on the
surfacez=0 becomes

f3t0t0
+ gf3z = f2t0

− gf1. sA32d

Although the third-order equationssA24d–sA27d and sA32d
with Eqs.sA30d andsA31d are quite complicated, especially
the asymmetrical conditions between two sidewalls aty=0
andy=b0, fortunately we have found an explicit expression
of the fundamental motion off3 as the following:

f3 = Fsz+ ddcx1x1
cosky

sinhksz+ dd
2k coshkd

+ kyc sinky
coshksz+ dd

coshkd
fsx1,x2d

− ksz+ ddc cosky
sinhksz+ dd

coshkd
fsx1,x2dGeivt0 + c.c.

sA33d

The balance in the fundamental motion of Eq.sA32d gives
out a limitative equation for the functionc,

2ive2ct2
−

g

2k
fT + kds1 − T2dge2cx1x1

− gk2s1 − T2de2fsxdc

+ e2Dc + 2iva8e2c − Aucu2c −
2v4

g
e2aec

* = 0. sA34d

Substituting e2t= t2, ex=x1 and e2ae=Ae, e2D=sv2

−ve
2d /2v ,e2a8=a, we recover the slow variables into their

original ones, and transfer Eq.sA34d into Eq. s10d.
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